
Introduction to Theory of Deep Learning

Lecture 3: Mickey Mouse Proof for Double Descent, Part 1

Background: Expected Trace of Random Projection Matrix

Theorem 1. Let X ∈ Rn×d have i.i.d. N (0, 1) entries. If d > n+ 1, then

E
[
X⊤(XX⊤)−1X

]
=

n

d
Id.

Proof. Define
M := X⊤(XX⊤)−1X ∈ Rd×d.

We wish to compute E[M ].
—
Step 1: Rotational invariance. Let U ∈ O(d) be any orthogonal matrix. Since X has i.i.d.

standard Gaussian entries, XU has the same distribution as X. Then

M(XU) = (XU)⊤
(
(XU)(XU)⊤

)−1
(XU) = U⊤X⊤(XX⊤)−1XU = U⊤M(X)U.

Taking expectations and using distributional equality,

E[M ] = E[M(XU)] = U⊤E[M ]U.

Thus, E[M ] commutes with all orthogonal matrices U . By Lemma 1, this implies

E[M ] = αId

for some scalar α.
—
Step 2: Trace computation. To determine α, take traces:

Tr(M) = Tr
(
X⊤(XX⊤)−1X

)
.

Using cyclicity of trace,

Tr(M) = Tr
(
(XX⊤)−1XX⊤) = Tr(In) = n.

Therefore,
E[Tr(M)] = n.

On the other hand,
Tr(E[M ]) = Tr(αId) = αd.
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Equating gives αd = n, so

α =
n

d
.

—
Step 3: Conclusion. Thus,

E[M ] =
n

d
Id.

Lemma 1 (Schur’s Lemma for Real Orthogonal Representations). Suppose A ∈ Rd×d satisfies
UA = AU for all U ∈ O(d). Then A = αId for some α ∈ R.

Proof. First, since A commutes with all diagonal sign-flip matrices (elements of O(d) of the form
D = diag(±1, . . . ,±1)), we deduce that all off-diagonal entries of A must vanish. Indeed, if D flips
only the i-th coordinate, then (DA)ij = −Aij while (AD)ij = Aij , forcing Aij = 0 for i ̸= j. Thus
A is diagonal.

Now, let R ∈ O(d) be a permutation matrix swapping coordinates i and j. Commutation
AR = RA forces the i-th and j-th diagonal entries of A to be equal. By varying i, j, we see all
diagonal entries are equal. Hence A = αId.

Geometric Intuition

The matrix
M = X⊤(XX⊤)−1X

is the orthogonal projection in Rd onto the row space of X. Indeed, for any v ∈ Rd, we have
Mv = X⊤(XX⊤)−1(Xv), which is the least-norm solution w to Xw = Xv. Thus Mv is exactly
the projection of v onto Row(X).

Therefore M is an idempotent projection matrix with rank n. Its trace is n, the dimension
Rotational invariance ensures that the row space is uniformly distributed among all N -dimensional
subspaces of Rd. The expected projection operator onto a random n-dimensional subspace is
isotropic, hence equal to (n/d)Id. This provides a geometric explanation of the result.

Mickey Mouse Proof for Double Descent

In modern machine learning, it has been observed that increasing model complexity (e.g. num-
ber of parameters) can sometimes improve generalization even after reaching a point where the
model exactly fits the training data. This phenomenon, known as double descent, contradicts
the classical U-shaped risk curve from basic learning theory. In this lecture, we start working
on a rigorous analysis of double descent in the simple setting of linear regression. We will quan-
tify how the test risk (expected error on new data) behaves as a function of model dimension,
in the the under-parameterized regime (fewer parameters than data points) and the over-
parameterized regime (more parameters than data).

Assumption 1 (Linear Gaussian Model). We consider a linear regression model with n training
examples. Each data point consists of a feature vector xi ∈ Rd and a scalar response yi ∈ R, for
i = 1, . . . , n. We assume:
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• The features xi are drawn i.i.d. from a d-dimensional Gaussian distribution with mean zero
and covariance Id (the d× d identity).

• The responses follow yi = x⊤i θ
∗ + ϵi, where θ∗ ∈ Rd is the (unknown) true parameter vector

and ϵi ∼ N (0, σ2) is independent noise.

We denote by X ∈ Rn×d the design matrix whose i-th row is x⊤i , and by Y ∈ Rn the vector of
responses. The loss function is the squared error, and we measure performance via the expected
risk R(θ) = E(x,y)[(y − x⊤θ)2]. In this well-specified linear model, the minimal risk (achieved by

the Bayes-optimal predictor f(x) = x⊤θ∗) is R∗ = σ2, and the excess risk of an estimator θ̂ is

R(θ̂)−R∗ = E(x,y)

[
(θ̂ − θ∗)⊤xx⊤(θ̂ − θ∗)

]
= E

[
∥θ̂ − θ∗∥22

]
,

where the expectation is over both a fresh test example and the training data (we used E[xx⊤] = Id).

Under Assumption 1, our goal is to analyze the excess risk E
[
∥θ̂ − θ∗∥22

]
for the empirical risk

minimizer in two regimes: (a) when d < n (under-parameterization), and (b) when d > n (over-
parameterization). We will see that in case (a) the risk increases as the model size d increases
(a classical regime of overfitting when d is large relative to n), whereas in case (b) increasing d
(further over-parameterizing the model) can actually decrease the risk again. This non-monotonic
behavior as a function of d is the double descent phenomenon.

Under-Parameterized Regime (n > d)

When the number of samples exceeds the number of parameters, the empirical least-squares solution
is unique and given by the ordinary least squares (OLS) estimator:

θ̂OLS = arg min
θ∈Rd

1

n

n∑
i=1

(yi − x⊤i θ)
2 = (X⊤X)−1X⊤Y ,

provided X⊤X is invertible. (For n > d, X⊤X is invertible almost surely under the Gaussian
assumption.) The OLS solution interpolates the training data with zero training error when d ≤ n,
and it coincides with the minimum-norm interpolator in that regime.

Proposition 1 (Excess Risk in the Under-Parameterized Case). Assume n > d+1 (so that X⊤X
is invertible and the expectation below is finite). Then the expected excess risk of the OLS estimator
is

E
[
∥θ̂OLS − θ∗∥22

]
= σ2 d

n− d− 1
.

When the number of parameters exceeds the number of samples, the least-squares problem
has infinitely many minimizers that achieve zero training error (the training data can be perfectly
interpolated). In practice, gradient descent or other implicit algorithms bias the solution toward
the minimum ℓ2-norm solution. We will analyze the minimum-norm interpolating estimator :

θ̂MN = argmin{∥θ∥2 : Xθ = Y } .

It can be shown that θ̂MN = X⊤(XX⊤)−1Y (this is the Moore-Penrose pseudoinverse solution).
Equivalently, θ̂MN can be written as

θ̂MN = X⊤(XX⊤)−1X θ∗ +X⊤(XX⊤)−1ϵ ,
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since Y = Xθ∗ + ϵ. Define the matrix

P := X⊤(XX⊤)−1X ,

which is the orthogonal projection onto the column space of X⊤ (a subspace of Rd of dimension n).
Notice that P is a d × d symmetric idempotent matrix (P 2 = P ) of rank n. Using this notation,
we can express the error as

θ̂MN − θ∗ = P θ∗ − θ∗ +X⊤(XX⊤)−1ϵ

= − (I − P ) θ∗ +X⊤(XX⊤)−1ϵ .

This decomposition separates the estimation error into two parts: a bias term−(I−P )θ∗ stemming
from the fact that in the over-parameterized regime the estimator cannot recover any component
of θ∗ lying in the nullspace of X, and a variance term X⊤(XX⊤)−1ϵ due to noise amplification.

Proposition 2 (Excess Risk in the Over-Parameterized Case). Assume d > n + 1. Then the
expected excess risk of the minimum-norm interpolator θ̂MN is

E
[
∥θ̂MN − θ∗∥22

]
= σ2 n

d− n− 1
+

d− n

d
∥θ∗∥22 .

Proof. Using the decomposition above, let a := −(I − P )θ∗ and b := X⊤(XX⊤)−1ϵ. We have
θ̂MN − θ∗ = a+ b. By construction, E[b | X] = 0 (since E[ϵ] = 0 and ϵ is independent of X) and a
is deterministic given X. Therefore the cross-term has zero mean:

E[a⊤b] = EX

[
a⊤E(b | X)

]
= 0 .

It follows that
E
[
∥θ̂MN − θ∗∥22

]
= E

[
∥a∥22

]
+ E

[
∥b∥22

]
,

i.e. the bias and variance contributions add.
For the variance term: condition on X and compute ∥b∥22 = ϵ⊤(XX⊤)−1ϵ. Taking expectation

over ϵ (with X fixed) yields

E
[
∥b∥22 | X

]
= σ2 tr

(
(XX⊤)−1

)
,

since Var(ϵ) = σ2In. Thus

E
[
∥b∥22

]
= σ2 EX

[
tr
(
(XX⊤)−1

)]
.

Under our Gaussian model, XX⊤ is an n × n Wishart matrix with d degrees of freedom. By an
analogous result to the one used in Proposition 1, we have E[(XX⊤)−1] = 1

d−n−1 In for d > n+ 1.

Therefore E[tr((XX⊤)−1)] = n
d−n−1 . This gives

E
[
∥b∥22

]
= σ2 n

d− n− 1
.

For the bias term: note that a = −(I − P )θ∗ is a d-vector. Since P is the projection onto an
n-dimensional random subspace of Rd, by symmetry we have

E[P ] =
n

d
Id .
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(Indeed, for any fixed unit vector u ∈ Rd, u⊤Pu is the squared length of the projection of u onto
the n-dimensional subspace Col(X⊤), which in expectation is n/d by rotational invariance. For
details, refer to background material.) Thus E[I − P ] = Id − n

d Id = d−n
d Id. It follows that

E
[
∥a∥22

]
= E

[
θ∗T (I − P )θ∗

]
= θ∗T E[I − P ] θ∗ =

d− n

d
∥θ∗∥22 .

Combining the two parts, we obtain

E
[
∥θ̂MN − θ∗∥22

]
= σ2 n

d− n− 1
+

d− n

d
∥θ∗∥22 ,

as claimed.

Remark 1. The excess risk in the over-parameterized regime consists of a variance term (the first
term, decreasing in d) and a bias term (the second term, increasing in d). Just above the inter-
polation threshold (d slightly larger than n), the variance term is very large (due to the factor

1
d−n−1 ) while the bias term is small, so the overall risk is high. As d grows further, the variance
term shrinks (since adding more parameters beyond the n data points dilutes the effect of noise),
but the bias term grows (since θ̂MN cannot recover components of θ∗ in directions with no data).
This trade-off means that the risk in Proposition 2 will typically decrease for a range of d > n and
then eventually increase towards the limit ∥θ∗∥22 as d → ∞. In other words, as a function of model
size d, the over-parameterized risk exhibits a U-shape: it drops after d = n (a ”second descent”),
achieves a minimum at some larger d, and then rises toward an asymptote.
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