
Prelude to Double Descent

Introduction

In classical learning theory, increasing model complexity beyond a certain point is expected to cause overfit-
ting and thus higher test error. Yet in modern overparameterized models, we often observe double descent :
as model complexity grows, the test error first decreases, then spikes dramatically near the point where the
model has just enough parameters to fit the training data (the interpolation threshold), and finally decreases
again as the model becomes even more overparameterized. In this note, we begin to analyze this phe-
nomenon in the simplest setting: ordinary linear regression. We focus purely on the mathematical analysis
of double descent in linear models, using only linear algebra and basic probability. All results are presented
in a theorem-lemma-proof format. We assume familiarity with the notion that gradient descent in over-
parameterized linear regression converges to the minimum-norm least-squares solution (the Moore-Penrose
pseudoinverse solution).

1 Problem Setup and Notation

Consider a training dataset of N examples (xn, yn)
N
n=1, where each feature vector xn ∈ RP and target

yn ∈ R. We assemble the feature vectors into a design matrix X ∈ RN×P whose n-th row is xT
n , and we

write Y ∈ RN×1 for the column vector of targets. We assume a linear model for the true data-generating
process:

yn = xT
nβ

∗ + ξn, n = 1, . . . , N,

where β∗ ∈ RP is the (unknown) true parameter vector and ξn is independent noise with mean 0 and variance
σ2. In vector form,

Y = Xβ∗ + ξ ,

where ξ ∈ RN is the noise vector (with E[ξ] = 0 and Cov(ξ) = σ2IN ).

In linear regression, we seek an estimator β̂ ∈ RP minimizing the training mean squared error. Depending
on the relationship between N and P , the solution may or may not be unique. We will use the following
terminology:

Definition 1 (Underparameterized vs. Overparameterized). We say the model is underparameterized if
P < N (fewer parameters than data points) and overparameterized if P > N (more parameters than data
points). The interpolation threshold is the boundary case P = N . In general, when P ≥ N , a linear model
can exactly interpolate (fit) any set of N training points.

In the underparameterized regime (P < N) with full column rank P , the empirical risk minimization
problem has a unique solution given by the ordinary least squares (OLS) formula:

β̂under = arg min
β∈RP

N∑
n=1

(xT
nβ − yn)

2 = (XTX)−1XTY ,

assuming XTX is invertible. In the overparameterized case (P > N), the least-squares problem is underde-
termined (infinitely many interpolating solutions achieve zero training error). In practice, however, gradient
descent or any small-norm favoring algorithm will converge to the minimum ℓ2-norm interpolating solution:

β̂over = arg min
β∈RP

{∥β∥2 : Xβ = Y } .
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This minimum-norm solution can be written in closed-form using the Moore-Penrose pseudoinverse:

β̂over = X+Y = XT (XXT )−1Y ,

where X+ ∈ RP×N denotes the pseudoinverse of X. (For P = N , if X is invertible, this coincides with the

usual solution β̂ = X−1Y .) In summary, the estimator we analyze is

β̂ =

{
(XTX)−1XTY, P ≤ N (unique OLS solution),

XT (XXT )−1Y, P ≥ N (minimum-norm interpolating solution) .

Our goal is to analyze the generalization performance of β̂. We measure this via the test mean squared
error (MSE), defined as

Etest = Enew

[
(ynew − xT

newβ̂)
2
]
,

where the expectation is over a new test example (xnew, ynew) drawn from the same distribution as the
training data (and independent of the training set). By the law of total expectation (averaging also over the

training set and noise in β̂), we can decompose the expected test error into bias, variance, and irreducible
error components. We formalize this next.

2 Bias–Variance Decomposition of Test Error

First, note that the optimal predictor (Bayes regressor) for this problem is f∗(x) = xTβ∗, which achieves an

irreducible error E[(ynew − f∗(xnew))
2] = σ2 due to the noise ξ. Our estimator β̂ will generally not exactly

equal β∗, either due to statistical estimation error or, if P > N , due to unidentifiable components of β∗. We
denote the bias of the estimator (as a vector) by

E[β̂]− β∗ ,

the difference between the expected estimated parameters and the true parameters, where the expectation
is taken over the randomness in the training process (sample noise and/or random sampling of training

examples). The variance is captured by the covariance matrix Cov(β̂). These induce corresponding bias and
variance in the predictions on a test point.

The following lemma gives the bias–variance decomposition for the test mean squared error.

Lemma 1 (Bias–Variance Decomposition). For any fixed test feature vector x ∈ RP ,

E
[
(y − xT β̂)2

]
= σ2 +

(
xT (E[β̂]− β∗)

)2︸ ︷︷ ︸
(bias)2

+xT Cov(β̂)x︸ ︷︷ ︸
variance

,

where the expectation is over the randomness in the training set (including noise) and y = xTβ∗ + (noise)
is the true label for x. In particular, σ2 is the irreducible noise term, the squared bias term represents error
due to any systematic difference between β̂ and β∗, and the variance term represents error due to estimation
variance of β̂.

Proof. By adding and subtracting the optimal prediction xTβ∗ inside the square and expanding, we obtain:

(y − xT β̂)2 = (y − xTβ∗)2︸ ︷︷ ︸
noise + Bayes error

+(xTβ∗ − xT β̂)2 + 2 (y − xTβ∗) (xTβ∗ − xT β̂) .

Taking expectation and using the fact that E[ y | x ] = xTβ∗ and E[ y − xTβ∗ | x ] = 0, the cross term
vanishes. Thus

E
[
(y − xT β̂)2

∣∣x] = E
[
(y − xTβ∗)2

∣∣x]+ E
[
(xTβ∗ − xT β̂)2

∣∣x] .
Since E[(y − xTβ∗)2 | x] = Var(y | x) = σ2 by assumption, we have

E[(y − xT β̂)2] = σ2 + E
[
(xT (β∗ − β̂))2

]
.
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The second term is the mean squared error in predicting xTβ∗ by xT β̂. We can decompose it as

E
[
(xT (β∗ − β̂))2

]
= E

[(
xT (β∗ − E[β̂]) + xT (E[β̂]− β̂)

)2]
.

Expanding this and noting that xT (β∗ − E[β̂]) is constant with respect to the inner expectation and

E
[
xT (E[β̂]− β̂)

]
= 0, we get

E
[
(xT (β∗ − β̂))2

]
=

(
xT (β∗ − E[β̂])

)2
+ xT Cov(β̂)x .

This is exactly the bias2 + variance decomposition of the prediction error (conditioned on x). Combining
with the irreducible noise σ2 term yields the stated result.

Lemma 1 tells us that to understand test error, we need to characterize the bias E[β̂] − β∗ and the

covariance of β̂. We now derive these for our linear regression estimator. To facilitate this analysis in
a unified way for both under- and overparameterized cases, it is useful to work with the singular value
decomposition (SVD) of the design matrix X.

3 SVD Analysis of the Estimator

Let the (thin) singular value decomposition of X be

X = UΣV T ,

where U ∈ RN×r, V ∈ RP×r have orthonormal columns, and Σ ∈ Rr×r is diagonal with positive entries.
Here r = rank(X) = min{N,P} (we assume X has full rank in the smaller dimension, as is typical when data
are in general position). We write the singular values as σ1, σ2, . . . , σr (assumed without loss of generality
in nonincreasing order σ1 ≥ σ2 ≥ · · · ≥ σr > 0), and denote by ui ∈ RN and vi ∈ RP the i-th columns of U
and V , respectively (the left and right singular vectors). Note that {v1, . . . , vr} forms an orthonormal basis
for the column space of XT (which is RP when P ≤ N , and a subspace of RP of dimension r when P > N).
We define Pr = V V T , which is the orthogonal projector onto the subspace spanned by {v1, . . . , vr} (the row
space of X, equivalently the column space of XT ).

Using this decomposition, one can express the estimator conveniently as follows:

Lemma 2 (Formula for β̂ via SVD). For both the underparameterized case (P ≤ N) and overparameterized
case (P ≥ N), the estimator can be written as

β̂ = V Σ+UTY ,

where Σ+ ∈ Rr×r is the diagonal matrix with entries σ−1
i . Moreover, this yields the explicit decomposition

β̂ = Prβ
∗ +

r∑
i=1

uT
i ξ

σi
vi .

In particular, E[β̂ | X] = Prβ
∗.

Proof. Using the SVD X = UΣV T , the normal equations for the minimizer of ∥Xβ − Y ∥22 (with an ap-

propriate minimal-norm constraint if needed) yield the pseudoinverse solution β̂ = X+Y = V Σ+UTY .
This formula covers both regimes: if P ≤ N and X has full column rank, then r = P and indeed
X+ = (XTX)−1XT ; if P ≥ N and X has full row rank, then r = N and X+ = XT (XXT )−1. Now
substitute Y = Xβ∗ + ξ = UΣV Tβ∗ + ξ. We have

UTY = UT (UΣV Tβ∗ + ξ) = ΣV Tβ∗ + UT ξ ,

using UTU = Ir. Therefore,

β̂ = V Σ+(ΣV Tβ∗ + UT ξ) = V V Tβ∗ + V Σ+UT ξ .

Noting that V V T = Pr and writing V Σ+UT ξ =
∑r

i=1 σ
−1
i (uT

i ξ) vi gives the stated result. Taking expectation

over the noise ξ (conditional on X) yields E[β̂ | X] = Prβ
∗, since E[uT

i ξ ] = 0 for each i.
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Lemma 2 provides a clear interpretation. The estimator β̂ is the sum of two parts: (i) a signal recovery
term Prβ

∗, which is the projection of the true parameter onto the subspace of RP that the training data can

actually “see” (the row space of X), and (ii) a noise-fitting term
∑r

i=1
uT
i ξ
σi

vi, which is a linear combination

of the right singular vectors weighted by the noise components uT
i ξ scaled by 1/σi. Note that if the model

is underparameterized (P ≤ N so that r = P and Pr = IP ), then Prβ
∗ = β∗ and the estimator is unbiased

(E[β̂] = β∗). In contrast, in the overparameterized case (P > N , so r = N < P ), Pr is a strict projector

(rank N), and β̂ is generally biased because Prβ
∗ may differ from β∗ (the components of β∗ in the nullspace

of X cannot be recovered and are effectively set to zero by the minimum-norm solution).

Using the above decomposition of β̂, we can compute the covariance as well:

Lemma 3 (Bias and Variance of β̂). For the estimator β̂, the bias (conditional on X) is

E[β̂]− β∗ = −(I − Pr)β
∗ ,

and the covariance matrix is

Cov(β̂ | X) = σ2
r∑

i=1

1

σ2
i

viv
T
i .

Equivalently, for any direction vi in the row space of X, Var(vTi β̂ | X) = σ2/σ2
i , and for any w orthogonal

to all vi (i.e. w in the nullspace of X), Var(wT β̂ | X) = 0.

Proof. From Lemma 2, E[β̂ | X] = Prβ
∗, so E[β̂ | X]− β∗ = (Pr − I)β∗ = −(I − Pr)β

∗. For the covariance,
again from Lemma 2 we have

β̂ − E[β̂ | X] =

r∑
i=1

uT
i ξ

σi
vi .

The coefficients uT
i ξ are independent zero-mean random variables with E[(uT

i ξ)
2] = σ2 (because ui has norm

1). Thus conditional on X, the variance along each vi direction is σ2/σ2
i . In matrix form, since {v1, . . . , vr}

are orthonormal, this gives

Cov(β̂ | X) =

r∑
i=1

Var
(uT

i ξ

σi

)
viv

T
i =

r∑
i=1

σ2

σ2
i

viv
T
i ,

as claimed. (For directions w orthogonal to all vi, clearly wT β̂ = 0 always since β̂ lies in the span of {vi},
so the variance is zero in those directions.)

We now have the necessary ingredients to express the test error in terms of the singular values and
singular vectors of X. Consider a fresh test example xnew ∈ RP with true label ynew = xT

newβ
∗ + ξnew (with

ξnew ∼ N (0, σ2) independent of the training noise). We are interested in the mean squared prediction error

E[(ynew − xT
newβ̂)

2]. Using Lemma 1 and plugging in the bias and covariance from Lemma 3, we obtain:

E
[
(ynew − xT

newβ̂)
2
]
= σ2 +

(
xT
new(Pr − I)β∗

)2

+ xT
new Cov(β̂)xnew

= σ2 +
(
xT
new(Pr − I)β∗

)2

+ σ2
r∑

i=1

(xT
newvi)

2

σ2
i

. (1)

The three terms in (1) correspond to: (i) the irreducible noise σ2, (ii) the squared bias term due to
any part of β∗ lying in the nullspace of X (i.e. (I − Pr)β

∗) which the model could not learn, and (iii) the
variance term arising from noise in the training data being amplified by the parameter estimation (note this

variance term can be equivalently written as
∑r

i=1
σ2

σ2
i
(xT

newvi)
2 as shown, or as σ2 xT

new(X
TX)−1xnew in the

underparameterized case, etc.).
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