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Abstract

In modern machine learning, it has been observed that gradient-based optimization
algorithms tend to find implicit forms of regularization, favoring solutions with certain
desirable properties even in the absence of explicit regularizers. In the context of linear
regression with more parameters than data points (overparameterization), gradient
descent is known to converge to the solution with minimum Euclidean norm among all
interpolating solutions1. This document provides a rigorous, pedagogical proof of this
phenomenon using continuous-time gradient flow. We begin by reviewing the necessary
linear algebra background and the definition of the Moore-Penrose pseudoinverse, which
gives the minimum-norm solution to linear systems2. We then set up the gradient flow
for overparameterized linear regression and state the main theorem: starting from zero
initial conditions, the gradient flow converges to the unique minimum-norm solution
that perfectly fits the data. A detailed proof is presented, accompanied by intuitive
commentary. Finally, we discuss the interpretation of this result and provide a few
exercises to solidify understanding.
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1 Introduction

In linear regression, we seek to fit a linear model to a given set of data. Consider a dataset
of m examples (xi, yi)

m
i=1, where each xi ∈ Rn is a feature vector and yi ∈ R is a target value.

The linear model assumes a relationship yi ≈ w⊤xi, where w ∈ Rn is a vector of parameters
or weights. The goal is to find a w that produces predictions w⊤xi as close as possible to yi
for all i. Equivalently, in matrix-vector form, we have:

Xw ≈ y,
where X is the m × n design matrix whose i-th row is x⊤

i , and y ∈ Rm is the vector of
targets.

A common approach is to choose w by minimizing the least-squares cost:

L(w) =
1

2
∥Xw − y∥22 =

1

2

m∑
i=1

(w⊤xi − yi)
2.

This is a convex quadratic optimization problem. When X has full column rank (i.e.
n ≤ m and the columns of X are independent), the solution is unique and given by the
normal equations X⊤Xw = X⊤y. However, in modern practice it is common to encounter
overparameterized settings where n > m (more parameters than data points). In this case,
X does not have full column rank; instead, it typically has full row rank (rank m), assuming
the m data points are independent. When rank(X) = m < n, the linear system Xw = y
is underdetermined: there are infinitely many solutions (assuming the system is consistent,
i.e. y lies in the column space of X).

A natural question arises: which of the infinitely many minimizers of L(w) (all of which
satisfy Xw = y) is found by a given optimization procedure? In particular, it has been
empirically observed and theoretically proven that plain gradient descent (with suitable
initialization) on the unregularized least-squares cost converges to the minimum Euclidean
norm solution w that interpolates the data3. This is often described by saying that gradient
descent implicitly regularizes towards the minimum-norm solution, even though no explicit
norm penalty is present in L(w).

In these notes, we will prove this fact rigorously in the simplified setting of continuous-
time gradient flow. Gradient flow can be thought of as the limit of gradient descent as
the step size tends to zero, yielding a differential equation that the parameters follow. By
analyzing this differential equation, we can precisely characterize the limiting behavior of the
parameters w(t) as t → ∞ and show that w(t) converges to the minimum-norm interpolating
solution.

We proceed as follows. In Section 2, we review some mathematical preliminaries in lin-
ear algebra, including the fundamental subspaces associated with a matrix (column space,
nullspace, row space) and orthogonal projections. In Section 3, we introduce the Moore-
Penrose pseudoinverse, which provides a closed-form expression for the minimum-norm so-
lution of Xw = y, and prove its key properties. In Section 4, we set up the gradient flow
dynamic for linear regression and precisely define what we mean by an ”overparameterized”
regime. Section 5 contains the statement of the main theorem on the convergence of gradient
flow to the minimum-norm solution. Section 6 provides a full detailed proof of the theorem

3https://math.stackexchange.com; https://www.cs.ubc.ca

3

https://math.stackexchange.com
https://www.cs.ubc.ca


with commentary at each step. We then offer some intuitive interpretation of the result in
Section 7, explaining why gradient flow gravitates to this special solution. Finally, Section
8 concludes with a few exercises to test understanding.

2 Mathematical Preliminaries

In this section, we establish some basic linear algebra concepts and results that will be used
later. The reader is assumed to have some familiarity with vectors, matrices, and operations
like transposition and the dot product, but we will define concepts such as subspaces and
projections for completeness.

2.1 Vectors, Norms, and Dot Products

We work in the Euclidean space Rn. We write vectors as bold lower-case letters (e.g. v ∈ Rn),
and matrices as upper-case letters (e.g. A ∈ Rm×n). The dot product or inner product of
two vectors u,v ∈ Rn is

u · v =
n∑

i=1

uivi.

The dot product induces the Euclidean norm (length) of a vector:

∥v∥2 = v · v =
n∑

i=1

v2i .

We will often drop the subscript and write |v| for |v|2 when the context is clear.

2.2 Subspaces: Column Space, Nullspace, and Row Space

Given a matrix A ∈ Rm×n:

• The column space (or range) of A, denoted Col(A) or Range(A), is the set of all
vectors in Rm that can be expressed as Aw for some w ∈ Rn. Equivalently, it is the
subspace of Rm spanned by the columns of A.

• The nullspace (or kernel) of A, denoted Null(A) or ker(A), is the set of vectors
v ∈ Rn such that Av = 0. It is a subspace of Rn consisting of all solutions to the
homogeneous equation Av = 0.

• The row space of A is the column space of A⊤ (the transpose of A). It is a subspace
of Rn spanned by the row vectors of A. We denote it by Row(A) or Col(A⊤).

These subspaces are related by the dimensions: dim(Col(A)) = dim(Row(A)) = rank(A),
and the fundamental rank-nullity theorem: dim(Null(A)) + dim(Row(A)) = n. Intuitively,
Row(A) and Null(A) together partition Rn into two complementary subspaces.
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Theorem 1 (Fundamental Theorem of Linear Algebra). For any matrix A ∈ Rm×n, the row
space of A is the orthogonal complement of the nullspace of A. In symbols:

Row(A) = (Null(A))⊥,

where (Null(A))⊥ = {u ∈ Rn : u · v = 0 for all v ∈ Null(A)}.

Proof. We give a brief proof. Let u ∈ Row(A). Then u = A⊤p for some p ∈ Rm. Take any
v ∈ Null(A), so Av = 0. Then

u · v = (A⊤p) · v = p · (Av) = p · 0 = 0.
Thus u is orthogonal to every vector in Null(A), which shows Row(A) ⊆ (Null(A))⊥.
Conversely, suppose u ∈ (Null(A))⊥. We need to show u ∈ Row(A), i.e. u can be

written as A⊤p for some p. Consider the vector Au ∈ Rm. We claim that p := Au satisfies
A⊤p = u. Indeed, for any v ∈ Null(A), we have v · (u − A⊤(Au)) = v · u − v · A⊤(Au) =
v · u− (Av) · (Au) = v · u− 0 = 0. Thus u− A⊤(Au) is orthogonal to the nullspace of A,
which by the first part of the proof means u−A⊤(Au) ∈ Row(A). But A⊤(Au) is clearly in
Row(A), so their difference u is also in Row(A). This completes the proof.

This fundamental result tells us that any vector in Rn can be uniquely decomposed
into a sum of two components, one lying in the row space of A and the other lying in the
nullspace of A. In particular, for any w ∈ Rn, there exist unique vectors wRow ∈ Row(A)
and wNull ∈ Null(A) such that

w = wRow + wNull,
with wRow ·wNull = 0.

2.3 Orthogonal Projections onto Subspaces

Given any subspace S ⊆ Rn, for any vector z ∈ Rn there is a distinguished vector in S
that is ”closest” to z in Euclidean norm. This is the orthogonal projection of z onto S,
defined as the unique vector ΠS(z) ∈ S such that z−ΠS(z) is orthogonal to every vector in
S. Geometrically, ΠS(z) is the foot of the perpendicular dropped from z onto the subspace
S. The difference z− ΠS(z) lies in S⊥ (the orthogonal complement of S).

One way to characterize the projection is by a minimization property:

ΠS(z) = argmin
s∈S

∥z − s∥2.

This says ΠS(z) is the point in S closest to z. Existence and uniqueness of ΠS(z) are
standard results in linear algebra (which we will not prove here), relying on the fact that the
minimization of a strictly convex quadratic function has a unique solution.

The orthogonal projection operator ΠS : Rn → S is linear, and satisfies Π2
S = ΠS

(projecting twice is the same as projecting once) and Π⊤
S = ΠS (it is self-adjoint with respect

to the dot product). A matrix P that satisfies P 2 = P and P⊤ = P is called an orthogonal
projection matrix. If P is an orthogonal projection matrix onto some subspace S, then
for any vector z, Pz yields the projection of z onto S.

As a concrete example, suppose A ∈ Rm×n has full row rank m. Then Row(A) ⊆ Rn has
dimension m. The matrix
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PRow(A) := A⊤(AA⊤)−1A
is an n×n matrix that projects any vector in Rn onto the row space of A. We can verify

that it is a projection:
P 2
Row(A) = A⊤(AA⊤)−1AA⊤(AA⊤)−1A = A⊤(AA⊤)−1A = PRow(A),

and symmetric:
P⊤
Row(A) = A⊤((AA⊤)−1)⊤A = A⊤(AA⊤)−1A = PRow(A),

since AA⊤ is symmetric and invertible. Thus PRow(A) is an orthogonal projection matrix
onto Row(A).

Similarly, if A has full column rank n, then AA⊤ is m×m invertible and
PCol(A) := A(AA⊤)−1A⊤

is an m×m projection matrix onto Col(A).

3 Moore-Penrose Pseudoinverse

When a matrix X ∈ Rm×n is not square or not invertible, we cannot talk about the usual
inverse X−1. However, we can often define a generalized inverse called the Moore-Penrose
pseudoinverse, denoted X+. The pseudoinverse plays a central role in solving least-squares
and underdetermined systems.

3.1 Definition and Characterization

The Moore-Penrose pseudoinverse X+ of a matrix X is defined as the unique matrix (of size
n×m) that satisfies the following four properties:

(i) XX+X = X.

(ii) X+XX+ = X+.

(iii) (XX+)⊤ = XX+.

(iv) (X+X)⊤ = X+X.

One can show that such a matrix X+ always exists (for any real matrix X) and is unique.
Verifying these four properties ensures you have the pseudoinverse. In many contexts, X+

behaves like an inverse of X on the appropriate subspaces. In particular, properties (iii) and
(iv) imply that P := X+X and P ′ := XX+ are orthogonal projection matrices (symmetric
idempotent matrices). Specifically:

• P = X+X is an n× n projection onto the row space of X (a subspace of Rn).

• P ′ = XX+ is an m×m projection onto the column space of X (a subspace of Rm).

Property (i) says X+ is a right-inverse of X on the column space (since XX+X = X means
XX+ acts like identity on the range of X). Property (ii) says X+ is a left-inverse on the
row space (since X+XX+ = X+ means X+X acts like identity on the range of X+, which
is the row space of X).
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3.2 Pseudoinverse in the Full Row Rank Case

The above abstract definition can be made concrete in the case we care about: when X has
full row rank m (with m ≤ n). In this scenario, XX⊤ is an invertible m×m matrix, whereas
X⊤X is singular (since rank(X⊤X) = rank(X) = m < n).

Proposition 1. If X ∈ Rm×n has full row rank m, then one representation of the pseudoin-
verse is:

X+ = X⊤(XX⊤)−1.

In other words, X+ can be written explicitly as the n×m matrix X⊤(XX⊤)−1.

Proof. We need to verify that X⊤(XX⊤)−1 satisfies the four defining properties of the pseu-
doinverse.

(i) XX+X = X(X⊤(XX⊤)−1)X = (XX⊤)(XX⊤)−1X = ImX = X.

(ii) X+XX+ = X⊤(XX⊤)−1XX⊤(XX⊤)−1 = X⊤(XX⊤)−1, since XX⊤(XX⊤)−1 = Im.
But X⊤(XX⊤)−1 is exactly X+, so property (ii) holds.

(iii) (XX+)⊤ = (XX⊤(XX⊤)−1)⊤ = ((XX⊤)(XX⊤)−1)⊤ = I⊤m = Im. On the other hand,
XX+ = XX⊤(XX⊤)−1 = Im. So indeed (XX+)⊤ = XX+.

(iv) (X+X)⊤ = (X⊤(XX⊤)−1X)⊤ = X⊤(XX⊤)−1X (since the whole product is a scalar
symmetric matrix of size n× n). Thus (X+X)⊤ = X+X.

All four properties are satisfied, so X⊤(XX⊤)−1 is the pseudoinverse of X. Uniqueness of
the pseudoinverse guarantees that this is the X+.

For intuition, note that X+ = X⊤(XX⊤)−1 is precisely the matrix that we identified
earlier as the projection-style inverse in the full row rank case. It satisfies XX+ = Im, so
X+ acts as a right-inverse of X on Rm (the output space). However, X+X is not the n× n
identity, but rather the projection onto Row(X). In fact, using our notation from before, we
have X+X = PRow(X).

3.3 Least Squares and Minimum-Norm Solutions

The pseudoinverse provides the solution to both least-squares problems and underdetermined
linear systems:

• Least-squares: For any X and y, the vector X+y is a solution to the least-squares
problem minw ∥Xw− y∥22. If X has full column rank, this reduces to the usual normal
equation solution (X⊤X)−1X⊤y. If X does not have full column rank (including the
overparameterized case), there are infinitely many minimizers of ∥Xw−y∥2 (assuming
the minimum is zero or the system is consistent). In that case, X+y gives the one with
smallest norm (as we discuss next).
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• Underdetermined systems: If Xw = y has at least one solution, then w = X+y is
a solution. Moreover, it is the unique solution with minimum ℓ2 norm4. If Xw = y
has no solution (inconsistent system), then X+y gives the minimum-norm solution to
the least-squares approximation (it yields the w that minimizes ∥Xw − y∥2).

We now prove the important fact that X+y indeed yields the minimum-norm solution
when Xw = y has many solutions.

Theorem 2 (Minimum-Norm Solution via Pseudoinverse). Suppose X ∈ Rm×n has full row
rank m, and consider the (underdetermined) linear system Xw = y where y ∈ Rm lies in the
column space of X. Then among all solutions w to Xw = y, the vector

w∗ := X+y = X⊤(XX⊤)−1y
has the smallest Euclidean norm. Moreover, this w∗ is the unique minimum-norm solu-

tion.

Proof. First, note that Xw∗ = X(X+y) = (XX+)y = Imy = y, so w∗ is indeed a solution
of Xw = y. Now let w be any solution of Xw = y. We will show that ∥w∥ ≥ ∥w∗∥, with
equality if and only if w = w∗.

Because both w and w∗ are solutions, we have Xw = Xw∗ = y. Consider the difference
u := w − w∗. Then Xu = Xw −Xw∗ = y − y = 0, so u ∈ Null(X). That is, the difference
between any solution w and the pseudoinverse solution w∗ lies in the nullspace of X. Now
recall that w∗ = X+y = X⊤(XX⊤)−1y. Since y ∈ Col(X), there exists at least one solution;
in fact Col(X) = Rm (full row rank means columns span Rm), so such a solution exists for
every y. The particular w∗ we have is in Row(X), because w∗ = X⊤(·) is explicitly in the
row space of X. Thus w∗ ∈ Row(X).

Now w∗ ∈ Row(X) and u ∈ Null(X). By the Fundamental Theorem of Linear Algebra,
Row(X) ⊥ Null(X). Therefore w∗ is orthogonal to u:

w∗ · u = 0.
We can now compare the norms:
∥w∥2 = ∥w∗ + u∥2 = ∥w∗∥2 + 2w∗ · u+ ∥u∥2 = ∥w∗∥2 + ∥u∥2 ≥ ∥w∗∥2,
since ∥u∥2 ≥ 0. Thus ∥w∥ ≥ ∥w∗∥. Furthermore, equality holds (i.e. ∥w∥ = ∥w∗∥) if and

only if ∥u∥2 = 0, which means u = 0, i.e. w = w∗. This shows w∗ is the unique solution of
minimal norm.

The above theorem is a key reason the pseudoinverse is so useful: it picks out the ”most
gentle” solution vector (smallest length) among all those that fit the data perfectly. This
minimum-norm property is a form of implicit regularization: although we did not explicitly
constrain w to be small, the algebraic procedure of solving Xw = y via X+ automatically
yields the smallest-norm solution5. We will see next that gradient-based optimization finds
this same solution.

4https://en.wikipedia.org/wiki/Moore-Penrose_inverse#Properties
5https://en.wikipedia.org/wiki/Moore-Penrose_inverse#Properties
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4 Gradient Flow and Linear Regression Setup

We now turn to the optimization dynamics of interest: gradient flow on the squared error
objective. We set up the problem of linear regression in the overparameterized regime and
introduce gradient flow as an infinite-infinitesimal step size limit of gradient descent.

4.1 Overparameterized Linear Regression

We consider a linear regression problem with m data points and n parameters, in the case
n > m. Let X ∈ Rm×n be the design matrix and y ∈ Rm the target vector, exactly as in the
introduction. We assume:

1. X has full row rank m. This implies m ≤ n and rank(X) = m. Thus the system
Xw = y is potentially underdetermined (if n > m) but has at least one solution for
any y (indeed Col(X) = Rm if rank m).

2. The system is consistent, meaning there exists at least one solution w such that Xw =
y. Equivalently, y lies in the column space of X. (This is automatically true since
Col(X) = Rm by full row rank; we mention it for clarity.)

In this overparameterized setting, there are infinitely many solutions w satisfying Xw = y;
they form an affine subspace w∗ +Null(X) for any particular solution w∗.

Our goal is to analyze which of these solutions is obtained by gradient flow on the squared
loss.

4.2 Gradient Flow Dynamics

We define the loss function

L(w) =
1

2
∥Xw − y∥22.

(We include the 1/2 factor for mathematical convenience; it does not change the location
of minima or the gradient’s zeros, only its scale.) Explicitly,

L(w) =
1

2

m∑
i=1

(x⊤
i w − yi)

2.

The gradient of L(w) with respect to w is computed using the chain rule:
∇wL(w) = X⊤(Xw − y).
This n-dimensional vector is the derivative of the loss in each parameter direction.
Gradient descent is the discrete-time iterative algorithm:
wk+1 = wk − η∇wL(wk),
for some step size (learning rate) η > 0. Gradient flow is the continuous-time analogue,

described by the differential equation (an initial value problem):
d
dt
w(t) = −∇wL(w(t)), w(0) = winit.

In our case, this becomes the system of linear ODEs:
ẇ(t) = −X⊤(Xw(t)− y), w(0) = winit.
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Here ẇ(t) denotes the time derivative of w(t).
The gradient flow can be seen as what happens when we take η → 0 in gradient descent

and simultaneously send the number of steps to infinity so that ηk = t stays finite. In
practice, gradient flow captures the trajectory of gradient descent when the steps are very
small. Importantly, gradient flow and gradient descent (with small enough η) will converge
to the same limit if they converge, because gradient flow is essentially a smooth interpolation
of the discrete updates.

In our analysis, we will focus on the gradient flow dynamics because they are easier to
study (being defined by a nice ODE). We will also make a key assumption on the initial
condition:

w(0) = 0.
That is, we start the parameters at the zero vector. This is a common and “neutral”

initialization for linear models (it does not favor any direction in parameter space). It will
also be crucial for the implicit bias result: starting at 0 means the initial parameter vector
has no component in any particular direction, including the nullspace.

5 Main Theorem

We can now state the central result of these notes.

Theorem 3 (Gradient Flow Converges to Minimum-Norm Solution). Consider the over-
parameterized linear regression setup with loss L(w) = 1

2
∥Xw − y∥2 as above, and let w(t)

follow the gradient flow ẇ(t) = −X⊤(Xw(t) − y) with initial condition w(0) = 0. Then as
t → ∞, w(t) converges to w∗ = X+y, the unique minimum-norm solution of Xw = y. In
other words,

lim
t→∞

w(t) = X+y,

and this limit w∗ satisfies Xw∗ = y and ∥w∗∥ = min{∥w∥ : Xw = y}.
A few remarks before we proceed to the proof:

• The theorem implies that gradient flow (and by extension, gradient descent for suffi-
ciently small step sizes) will find the pseudoinverse solution X+y among all possible
solutions. This is precisely the statement of implicit regularization for linear regression:
even without an explicit norm penalty, the algorithm biases towards the minimum-
norm interpolant6.

• The assumption w(0) = 0 is important. In fact, if we started with some nonzero w(0)
that had a component in the nullspace of X, that component would never be corrected
by the gradient flow, because the gradient X⊤(Xw − y) is always orthogonal to the
nullspace of X. In such a case, the limit would be X+y plus the persistent nullspace
component of the initial w(0)7. By starting at 0 (which has no nullspace component),
we ensure the trajectory stays within the row space of X and thus converges to the
pure minimum-norm solution (which lies in the row space).

6https://math.stackexchange.com
7https://math.stackexchange.com
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• The condition that X has full row rank can be relaxed slightly. If X does not have
full row rank (so the system might not be consistent or the column space is a strict
subset of Rm), gradient flow will still converge to X+y, which in that case is the least-
squares minimizer (not achieving zero training error unless y has no component in the
orthogonal complement of Col(X)). For simplicity, we assume full row rank so that y
is exactly attainable.

6 Proof of the Main Theorem

We now give a complete proof of Theorem 3. The proof will involve examining the structure
of the gradient flow ODE and leveraging the linear algebra results from earlier sections. We
will break the reasoning into a few steps and lemmas for clarity.

Step 1: Decomposition into Row Space and Nullspace

Recall that Rn = Row(X) ⊕ Null(X) (direct sum decomposition). Since w(0) = 0, we
can express w(t) for any t uniquely as wrow(t) + wnull(t), where wrow(t) ∈ Row(X) and
wnull(t) ∈ Null(X). We will show that actually wnull(t) remains zero for all time if it starts
zero.

Lemma 1 (Nullspace Component Remains Constant). Under the gradient flow ẇ(t) =
−X⊤(Xw(t) − y), the component of w(t) in Null(X) does not change over time. In fact,
d
dt
wnull(t) = 0 for all t.

Proof. Take any vector v ∈ Null(X) (so Xv = 0). Consider the dot product v · ẇ(t):
v · ẇ(t) = v · [−X⊤(Xw(t)− y)] = −(Xv) · (Xw(t)− y) = −0 · (Xw(t)− y) = 0.
Thus v · ẇ(t) = 0 for all v in the nullspace of X. But wnull(t) is, by definition, the

projection of w(t) onto Null(X). The time derivative of that projection is simply d
dt
wnull(t) =

ΠNull(X)(ẇ(t)). However, ẇ(t) has zero inner product with every vector in Null(X), which
means ẇ(t) is orthogonal to Null(X) at all times. Therefore, the projection of ẇ(t) onto
Null(X) is zero. In formula:

d
dt
wnull(t) = ΠNull(X)(ẇ(t)) = 0.

This shows that wnull(t) is constant in time. Given that wnull(0) = 0 (because the initial
w(0) has no nullspace component), we conclude wnull(t) = 0 for all t.

This lemma formalizes the intuition that gradient flow never produces movement in
directions that do not affect the loss. Since any movement in the nullspace of X does not
change Xw (and hence does not change the loss L(w)), the gradient in those directions is
zero, so any nullspace component of w remains as whatever it was initially. In our case,
that means w(t) stays entirely in Row(X) for all time (because we started with no nullspace
component).

Step 2: Dynamics within the Row Space

Due to Lemma 1, we can restrict our attention to the row space. When w(t) ∈ Row(X),
we can parametrize w(t) in terms of an m-dimensional vector (since dim(Row(X)) = m).

11



Specifically, because the columns of X⊤ span the row space, there exists some vector u(t) ∈
Rm such that:

w(t) = X⊤u(t).
(If X has full row rank, X⊤ has linearly independent columns, so this representation u(t)

is unique.)
Our plan will be to derive a differential equation for u(t) and solve it. First, let’s express

Xw(t)− y in terms of u(t):
Xw(t)− y = X(X⊤u(t))− y = (XX⊤)u(t)− y.
Using this, the gradient flow equation ẇ(t) = −X⊤(Xw(t)− y) becomes:

ẇ(t) = −X⊤[(XX⊤)u(t)− y]

= −X⊤(XX⊤)u(t) +X⊤y.

But w(t) = X⊤u(t), so differentiating both sides gives:
ẇ(t) = X⊤u̇(t).
Equating the two expressions for ẇ(t), we get:
X⊤u̇(t) = −X⊤(XX⊤)u(t) +X⊤y.
We can cancel X⊤ on the left side (more rigorously, since X⊤ is one-to-one on Rm, we

can premultiply both sides by (X⊤)+ = (XX⊤)−1X to get equivalently):
u̇(t) = −(XX⊤)u(t) + y.
This is now a linear ODE in m-dimensional space:

u̇(t) + (XX⊤)u(t) = y. (∗)

The matrix XX⊤ is an m × m symmetric positive-definite matrix (since X has rank m).
Equation (∗) is a first-order linear inhomogeneous ODE with a constant coefficient matrix
XX⊤ and constant ”forcing” term y.

We can solve this ODE using standard methods. The homogeneous part u̇+(XX⊤)u = 0
has general solution uhom(t) = e−(XX⊤)tc for some constant vector c ∈ Rm (here e−(XX⊤)t

is the matrix exponential of −(XX⊤)t). To find a particular solution to the full equation,
note that since the forcing term y is constant in time, we can look for a constant solution
upart(t) = u∗ (a constant vector). Plugging u∗ into (∗) and setting u̇ = 0, we get:

0 + (XX⊤)u∗ = y.
Since XX⊤ is invertible, this gives u∗ = (XX⊤)−1y.
Thus the general solution to (∗) is:
u(t) = e−(XX⊤)t [−(XX⊤)−1y] + (XX⊤)−1y = (Im − e−(XX⊤)t)(XX⊤)−1y.
At t = 0, we have w(0) = 0, hence 0 = w(0) = X⊤u(0), which implies X⊤u(0) = 0.

Because X has full row rank, X⊤ is one-to-one, so u(0) must be the zero vector in Rm.
Therefore u(0) = 0. Using the general solution for u(t):

u(0) = −(XX⊤)−1y + (XX⊤)−1y = 0,
so c = −(XX⊤)−1y.
Now we have the specific solution for u(t):
u(t) = e−(XX⊤)t[−(XX⊤)−1y] + (XX⊤)−1y = (Im − e−(XX⊤)t)(XX⊤)−1y.
Finally, recall that w(t) = X⊤u(t). Thus:

w(t) = X⊤
(
Im − e−(XX⊤)t

)
(XX⊤)−1y. (†)
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At t = 0, w(0) = X⊤(Im − Im)(XX⊤)−1y = 0, as expected. As t → ∞, note that
e−(XX⊤)t → 0 (the matrix exponential decays to the zero matrix because XX⊤ is positive-
definite with real eigenvalues λi > 0, so e−λit → 0 for each eigenvalue). Thus Im−e−(XX⊤)t →
Im. Therefore

limt→∞ w(t) = X⊤(Im)(XX⊤)−1y = X⊤(XX⊤)−1y.
But X⊤(XX⊤)−1y is exactly the pseudoinverse solution X+y. So indeed limt→∞ w(t) =

X+y.
We have thus shown that w(t) converges to X+y as t → ∞. This proves that gradient

flow reaches the minimum-norm solution.
To be completely thorough, we should verify that the limit w∗ = X⊤(XX⊤)−1y indeed

satisfies the normal equations (which guarantee it is a stationary point of the loss) and that
it fits the data:

• Xw∗ = XX⊤(XX⊤)−1y = y, so w∗ achieves zero training error (it interpolates the
data).

• X⊤(Xw∗ − y) = X⊤(y − y) = 0, so the gradient ∇L(w∗) = 0. Thus w∗ is a critical
point of the loss. In fact, w∗ is the global minimizer of the loss L(w) on the affine set
{w : Xw = y}, but since all points on that affine set have L(w) = 0, any of them is a
global minimizer of L. The uniqueness of w∗ comes not from the objective value but
from the minimal norm consideration, which we already addressed in Theorem 2.

This completes the proof of Theorem 3.

7 Intuition and Interpretation

The above proof, while algebraically precise, can be understood in simpler terms. At its
heart, the reason gradient flow finds the minimum-norm solution is because it only moves
in directions that reduce the training error, and those directions turn out to be exactly the
directions within the row space of X. Any component of w in the nullspace of X does not
affect the output Xw at all, so gradient flow has no incentive to move in those directions.
In fact, as we showed, if you start with w(0) = 0 (which has no nullspace component), you
will never pick up a nullspace component as the dynamics evolve. This means the solution
w(t) always stays in the row space. Among all solutions of Xw = y, the one that lies in the
row space is exactly the minimum-norm solution (recall Theorem 2). Thus, gradient flow
implicitly imposes the condition that w stays in Row(X), which is why it ends up at X+y
and not any other solution.

Another perspective is to consider an explicit ℓ2 regularization and then remove it. If we
add a small weight-decay term λ

2
∥w∥2 to the loss (where λ > 0), the minimizer becomes

wλ = argminw

{
1
2
∥Xw − y∥2 + λ

2
∥w∥2

}
.

Setting the gradient to zero gives the so-called ridge regression normal equations:
X⊤(Xwλ − y) + λwλ = 0,
which leads to
wλ = (X⊤X + λIn)

−1X⊤y,
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w1

w2

Xw = y
0

w′ w∗ = X+y

Figure 1: Geometric illustration in R2. The line represents the affine subspace of solutions
{w : Xw = y} for an underdetermined system. Gradient flow starting at 0 will move along
the perpendicular direction to reach the solution w∗ directly, rather than sliding along the
line to some other w′. Thus w∗, the orthogonal projection of 0 onto the solution set, is the
one with minimum norm.

assuming n is not too large or we interpret the inverse in a generalized sense. For λ > 0,
X⊤X + λI is invertible (even if X⊤X is singular) because λI makes it strictly positive-
definite. As λ → 0+, one can show that wλ → X+y8. This aligns with our gradient flow
result: the minimum-norm interpolating solution is what you get by taking ridge regression
and letting the regularization weight go to zero. Gradient descent implicitly performs this
limit: it finds the same w∗ without you ever having to specify λ explicitly.

In practical terms, this implicit regularization explains why even very complex models
(with many more parameters than data points) can generalize well: the training algorithm
itself selects a ”simple” solution (in linear regression, the one of smallest norm) out of the
many that fit the training data perfectly. In more advanced settings (like neural networks),
analyzing implicit bias is much harder, but the linear case we proved here is one of the first
and most important examples illustrating the concept.

8 Exercises

1. Verification of Pseudoinverse Properties. Let X =

(
1 2 0
0 2 2

)
, which is a 2× 3

full row rank matrix. Compute its pseudoinverse X+ using the formula from Propo-
sition 1. Then verify directly (by matrix multiplication) that X+ satisfies the four
Moore-Penrose conditions (i)–(iv) from Section 3.

2. Minimum-Norm Solution in a Simple System. Consider a linear system with
one equation and two unknowns: x1+2x2 = 4. Describe the set of all solutions (x1, x2)
in R2. Find the solution with minimum Euclidean norm. (Hint: You can do this by
geometry, or by using the pseudoinverse.) Now suppose we run gradient descent on
L(w) = 1

2
(x1+2x2−4)2 starting from (0, 0). If we use a small step size, which solution

does it approach?

3. Influence of Initialization. Let w(0) = w0 be an arbitrary initial vector, and w0 =

8https://math.stackexchange.com
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w
∥
0 +w⊥

0 be its decomposition into Row(X) (the part w
∥
0) and Null(X) (the part w⊥

0 ).
Without doing any new calculations, use our results to argue what limt→∞w(t) will
be for gradient flow started at this w(0). In particular, how does the limit depend on
w⊥

0 ? What happens if w⊥
0 ̸= 0? (You may assume X has full row rank as usual.)
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